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TRANSFORMATIONS OF THE JACOBIAN AMPLITUDE FUNCTION
AND ITS CALCULATION VIA THE ARITHMETIC-GEOMETRIC MEAN*

KENNETH L. SALAd"

Abstract. With the aid of the Poisson summation formula, expressions for the Jacobian amplitude
function, am (z; m), along with the complete set of Jacobian elliptic functions are given that, aside from
their branchpoints and poles, respectively, are convergent throughout the complex plane for arbitrary
parameter m. By utilizing the expression for am (z; m), its periodicity properties are determined in each of
the regions m < 0, 0 < m < 1, and m > 1. Novel yet fundamental identities are presented describing various
linear and quadratic transformations of the Jacobian amplitude function. Finally, that method based on the
arithmetic-geometric mean and most widely employed for calculating the Jacobian elliptic functions is shown
to be, when interpreted explicitly in terms of am (z; m) and its transformation properties, a method first
and foremost for the calculation of the Jacobian amplitude and co-amplitude functions from which the
elliptic functions themselves are subsequently evaluated by means of simple, trigonometric identities.

Key words. Jacobian amplitude function transformations, Jacobian elliptic functions, arithmetic-
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1. Introduction. The most familiar ofthe twelve-member family ofJacobian elliptic
functions (JEF) is the copolar trio

sn(z; m)=sin [am (z; m)]- 03 (R),(z/(R)3a; q)
02 04(z/O; q)’

04 02(Z/032; q)
(1.1) cn(z; m)-cos [am (z; m)]-

02 04(Z/032; q)’

d O4 l)3(z/); q)
dn(z; m)=z am (z; m) (R)--- O4(Z/O32; q),

where am (z; m) is the Jacobian amplitude function, m is the Jacobian parameter
(k=+m1/2 is the modulus), q=exp[-TrK’(m)/K(m)] is the nome with K(m) and
K’(m)=K(1-m) the Jacobian quarter periods, and Oi(z; q), i= 1,... ,4, are the
theta functions with Oi denoting (R)i(z=0; q). The remaining members of the JEF
family can be defined directly either as reciprocals or ratios of these three functions
or by adding to the argument z one or both of the quarter periods, e.g., cd(z; m)=
cn(z; m)/dn(z; m) sn(z+ K; m). In what follows we will assume that the parameter
m is real but otherwise arbitrary while the variable z x + iy is, in general, arbitrary
and complex. Comprehensive descriptions of elliptic functions and JEF in particular
may be found in [8], 10], [20], and [23], while extensive compendia of the properties
of JEF are given in [5], [13], [15], and [17]. In general, well-known identities involving
JEF will be cited without specific reference since they may be found in any of the
aforementioned works.

The canonical definitions of the JEF given by (1.1) represent two characteristically
distinct approaches to the description of these functions. Historically, the JEF were
first defined as inverses of elliptic integrals with the basis of this approach summarized
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by the fundamental identity am (z; m)= F-l(z; m)where F(z; m)is the elliptic integral
of the first kind (a historical account of the development of elliptic function theory is
given by Ailing 1]). However, the study of the JEF via the amplitude function is not
and has never been the favored approach principally for the reason that, since am (z; rn)
is not itself an elliptic function, this approach could not effectively exploit the many
general and powerful theorems for elliptic functions but would instead be forced to
rely almost exclusively on "brute force" algebraic methods. With origins traceable to
Jacobi’s seminal work Fundamenta Nova [12], the preferred approach to the study of
the JEF has been through the theta functions, which, of course, are entire functions
with simple zeros. In modern texts on elliptic function theory (e.g., Chandrasekharan
[8]), the function am (z; m) is ignored altogether.

To describe the amplitude function thus as one of the more obscure higher
transcendental functions would be an understatement. The extent of its inconspicuous-
ness is best illustrated with the example ofthe classical problem ofthe simple pendulum.
The angular displacement 19 of a point mass/z constrained to swing in a vertical plane
by a massless, rigid rod of length R is described by the nonlinear equation (Whittaker
[221)

(1.2)
d219 g
dt---W+ sin O 0,

or, equivalently,

(1.3) - txR
2 - + txgR(1 -cos 19)= Eo

where the total energy Eo is a constant. Note that (1.2) is also identical in form to the
traveling wave, sine-Gordon equation. With the most general possible initial conditions
of O 0 and dO/dt [2Eo/tzR2]/ for 0 (this choice places no restrictions on the
value of Eo), the exact general solution to (1.2) and (1.3) is simply

(1.4) 19(t)2 am [(R) /2 ] 2/xgR
t;m m-

Eo
a result that follows immediately from the identities (d/dx)am(x; m)= dn (x; m) and
(d/dx) dn (x; m) -(m/2) sin [2am (x; m)]. Despite the simplicity of this result, the
explicit solution (1.4) has heretofore never been published even though dozens of texts
and papers have treated the simple pendulum problem "exactly." Invariably, these
"exact" treatments solve not explicitly for 19(t) but rather for the variable sin (19/2)
(see, e.g., Whittaker [22] and Ailing [1]) and, furthermore, choose to either ignore
entirely the rotating (rn < 1) pendulum by adopting initial conditions that restrict the
value of m to m > 1, or to treat the cases of rn < 1 and m > 1 as distinct problems (the
special case of rn is also often treated separately). The distinction, however, between
O(t) and sin (19/2) is not a trivial one; the latter is a true doubly periodic function for
all values of the parameter m # whereas the amplitude function possesses a real
period if and only if m > 1, i.e., only the am (z; m) solution as given in (1.4) explicitly
and unequivocally distinguishes between the oscillating (m > 1) and rotating (m < 1)
pendulum solutions. In addition, it is important to note that (1.4) is a solution to the
pendulum equation (1.2) for arbitrary values of m, i.e., it is solely the initial conditions
that determine the specific value of the parameter m. Thus we have, from (1.4), that
sin (19/2)= sn[(g/mR)l/2t; m]= k-sn[(g/R)/2t; 1/m], revealing that both cases of
a parameter greater than 1 and less than 1 (as well as rn 1) are succinctly and
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completely delineated by the result in (1.4) and that, in contrast, the "traditional"
division of this problem into two (or three) distinct cases is unnecessarily redundant.

In the following, utilizing a completely novel representation for am (z; m) that is
convergent throughout the complex plane excepting only the logarithmic branchpoints
of the function (hereafter the term "unrestricted representation" will be used to denote
any representation of a function that is valid throughout the complex plane except at
any isolated, singular points and/or branchpoints of the function), we examine its
periodicity for all real values of m. We also present various linear and quadratic
transformations of the amplitude function corresponding to, e.g., the complementary
parameter transformation, the Landen and Gauss transformations, etc. Although the
expression of these transformations in terms of the JEF are well known, the results
presented here for am (z; m) are, with one exception, new results. As will be evident,
the transformations for am (z; m) offer concise, straightforward representations for
these transformations and, in certain cases, offer a simple representation for which the
corresponding JEF transformation is considerably more complicated. An example of
the latter is the ascending Landen transformation that takes a simple form for am (z; m)
whereas the identities involving the JEF are algebraic. In addition, the formulae
presented here offer further insight into the nature of these basic transformations
beyond that associated strictly with the JEF formulae.

Principally for reasons of computational efficiency, the most widely used method
for calculating the JEF (and elliptic integrals) is that based on the arithmetic-geometric
mean along with various supplemental relations normally involving specific transforma-
tions directly related to the function to be evaluated (see the general articles by King
[14], Carlson [6], and Milne-Thomson [17]). The term "arithmetic-geometric mean"
will henceforth be understood to include whatever supplemental relations are used in
conjunction with the arithmetic-geometric mean itself in the overall calculation of the
specific function in question. The final section of this paper describes the method of
the arithmetic-geometric mean explicitly in terms of the amplitude function and its
transformation properties and will demonstrate that the method of the arithmetic-
geometric mean is first and foremost a technique for the calculation NOT of the JEF
but rather of am (z; m) directly (along with the "coam" function am (K-z; m)). It
is emphasized that the intent of this section is not to define or present algorithms for
the arithmetic-geometric mean as applied to the calculation of the JEF; there exist
several excellent, comprehensive descriptions of this technique [1], [6], [7], [9], [14],
[16], including strictly algebraic versions [6], [21], computer algorithms [4], [11], as
well as versions permitting complex parameters [9]. Rather, we wish to show that the
actual basis for this technique is best and most clearly described in terms of the
transformation formulae for am (z; m) presented in the first parts of this paper.

2. Unrestricted representations for the Jacobian functions. The Fourier series for
the functions dn(z; m) and am (z; m) may be written in the following form:

(2.1)
dn(z; m)=

2K +-- 1 + q2n COS

2K n=-oo
sech nTr e in,n-z/K

and

(2.2) am (z" m) dn(z; m) dz +2"rrz 1 q"
2K ,,=1 n l+q
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However, as a consequence of the fact that the variable z and the summation index
n are cofactors in the Fourier series representations, these expressions are only valid
throughout the restricted domain IIm (z/K)I Im (iK’/K). For example, for 0 < m < 1
where both K and K’ are real, these expressions are valid only in the infinite strip
IIm (z)l< K’(m). In addition, or rather as a result of this limitation, the Fourier series
such as that given by (2.1) for dn(z; m) account explicitly only for the periodicity
properties with respect to the quarter-period K(m) and completely fail to describe the
behavior with respect to the quarter-period iK’(m). To arrive at an unrestricted
representation for dn(z; m), we apply the Poisson summation formula (see Bellman
[2] for a discussion and examples of the applicability of this formula)

(2.3) Y f(n)= f(u) e’ du

to the second of (2.1) withf(n) sech n-K’/K] exp {in,zK}. Replacing the variable
"n" with ’u" and evaluating the integral given in (2.3) leads directly to the result

(2.4) dn(z; m)==- sech n +

This expression for the function dn(z; m) is superior to the Fourier series representation
(2.1) in that, (a) equation (2.4) is convergent throughout the entire complex plane,
poles excepted, and, (b) paly as a consequence of this, it describes equally explicitly
the periodicity of dn(z; m) with respect to both K(m) and K’(m) (the actual periods
are 2K(m) and 4iK’(m)). Indeed, since the variable z and the summation index n
appear as additive terms in (2.4) in contrast to the Fourier series, (2.1), where they
are multiplicative factors, the only condition required to ensure convergence of the
expression (2.4) is Re (K/K’)O which, for real m, is equivalent to m 0.

The analogous Poisson-sum-transformed expressions for sn(z; m) and cn(z; m),
from which the remaining members of the JEF family are derived as noted previously,
are found by following exactly similar procedures as for the case of dn(z; m) above,
i.e., the Fourier series for these functions are first conveed to a summation over an
index "n" running from - to +, the summation term is substituted into (2.3), and,
following a substitution of the variable "n," the integration is performed. The final
results may be compactly expressed in the following form, with A /2K’:

dn(z;m)=A 2 sech n

(2.5) k cn(z; m) A 2 1)"sech
K

n+

k.sn(;m)=A 2 (-1) tanh n+

k’.nd(;m)=A 2 sech n+-+
2

(2.6) -kk’. sd(;m)=A 2 (_l)sech
K n+-+l z

=_ 2

k cd(;m) A 2 (-1) tanh
K 1

n+-+
=_ 2 2K
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cs(z; m)= A , csch

(2.7) ds(z;m)=A (-1)"csch n

ns(z;m) A . (-1)ncoth
7rK +

z

-k’. sc(z; m)=A n+2+
(2.8) k" nc(z; m) A (-1)" csch n+2+

dc(z; m)= A ,
2 2K/

The symmetry of these expressions is striking; with the exception of certain factors of
+i, the right-hand sides of (2.5)-(2.8) are, interestingly, exactly the set of (symmetrical)
primitive elliptic functions originally defined by Neville [18], [19]. All twelve of these
expressions are valid throughout the complex plane for arbitrary m 0, their respective
poles excepted. Each of the numbered equations represents a copolar trio of the JEF
while the three quartets formed from the respective members of each of these trios are
coperiodic. The expressions for sn, cn, and dn recently have been presented and
discussed by Boyd [3]. However, to the best of the author’s knowledge, (2.5)-(2.8) for
the complete JEF family have not been published previously.

Integration of (2.4) results in an expression for the amplitude function in the form

(2.9) am(z;m)= Y gd n+

(2.10)

where gd (z) is the Gudermannian function. Equations (2.9) and (2.10) converge
throughout the complex plane except at the logarithmic branchpoints z=
2sK + (2t + 1)iK’ where s and are arbitrary integers. Equation (2.9) will serve as the
basis for the derivation of the various identities in the following work so that the results
obtained will be valid without restrictions on the range of z; those results obtained by
direct reference to the analogous JEF relations, i.e., by "inversion," are generally
accompanied by restrictions on the range of the real and/or imaginary parts of the
variable z.

It is worthwhile noting that although the unrestricted representations given above
for the JEF and for am (z; m) are much more attractive for analytical purposes than
their limited Fourier series counterparts, neither set of expressions, for purposes of
numerical calculation, is as computationally efficient as those methods based either
on the arithmetic-geometric mean or on the use of the theta functions (cf. [4], [6],
[11], [14]). High precision, numerical evaluation of the JEF or am (z; m) using the
Fourier series is truly practical only when m 0 or, using the expressions above, when
ml.

Since the characteristics of the function am (z; m) in the complex plane are so
intimately connected with the nature ofthe Gudermannian function, a brief accounting
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of gd (z) is in order at this point. Because the function sech (z) is a singly periodic,
meromorphic function with simple poles at the points (2t+ 1)i7r/2 with residues of
(-1)t/li where t=0, +1, +2,. ., the Gudermannian function defined as the definite
integral (Jahnke and Emde [13])

Io" ir
gd (z) a + i/3 sech (z) dz, z (2n + 1) --,

where a and/3 are strictly real, is a single-valued, analytic function provided that the
complex plane is cut along the branchlines lying on the imaginary axis from (4t + 1) ir/2
to (4t+3)iTr/2 (logarithmic branchpoints for gd (z)) where is an arbitrary integer.
Relations such as sinh (z) =tan [gd (z)] and cosh (z) sec [gd (z)] follow directly from
the definition above. The real and imaginary parts ofgd (z) for x 0 are given explicitly
and uniquely by the relations

a =gd (x) +tan-1 [csch (x)]-tan-1 [cos (y) csch (x)],
(2.11)

/3 tanh-1 sin (y) sech (x)

with gd (x)= 2 tan-1 [tanh (x/2)] and where I 1< and I 1- 0 as Ixl-  
for all y. For x=0 and y (2t+ 1)ir/2, we have a =0 and/3 =tanh-1 [sin (y)]. Note
that gd (z) is singly periodic with period 2ri and that gd (-z)=-gd (z) and gd (z*)=
gd* (z). Expanding sech (z) in terms ofexp (+z) and integrating leads to an unrestricted
representation for the Gudermannian function in the form

(-1"
(2.12) gd (z) sgn (x) -- 2 [sgn (x) cosh [(2n 4-1)z] -sinh [(2n 4-1)z]],

,=o2n/1

which is convergent throughout the complex plane, the logarithmic branchpoints
z (2t 4-1)ir/2 excepted, and where sgn (x) 4-1, O, or -1 according to x O, x O,
Or x (0, respectively (the real part of gd (z) vanishes along the imaginary axis). It
follows directly from (2.12) that

1 (-1)"
(2.13) gd (x + iy+ in,r)=sgn (x) 7r + (-1)" gd (x + iy)

2

revealing a finite discontinuity (of 2r) in the real part of gd (z) across each of the
branchcuts (x 0, cos (y) < 0).

Before proceeding to examine the specific properties of the Jacobian amplitude
function, it is appropriate at this point to discuss briefly its general characteristics in
the complex plane given the basic results immediately above. Neville [18, pp. 18-20]
has shown that the integral of an elliptic function having zero residues defines a doubly
(additive) pseudoperiodic, meromorphic function. The function am (z; m), in contrast,
as the integral of the elliptic function dn(z; m) having nonzero residues (specifically,
dn(z; m) has simple poles with residues of-i at the points 2sK +(4t+ 1)iK’ and +i
at the poles 2sK +(4t- 1)iK’, where s, are arbitrary integers), is, in general, a doubly
pseudoperiodic function with logarithmic branchpoints. Thus am (z; m), were it defined
solely by (1.1) and (2.2), would be an infinitely multiple-valued function of z with
branches differing by integral multiples of 2r corresponding to the infinite number of
possible paths of integration from zero to z encircling the poles of dn (z; m) in different
ways. However, by cutting the complex plane along the line segments joining these
logarithmic branchpoints, specifically from 2sK+(4t+ 1)iK’ to 2sK +(4t+3)iK’,
where s, are integers, the function am (z; m) is made single-valued and analytic
throughout the cut, complex plane. Finally, a principal branch is selected from among
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these single-valued branches by the requirement am (z 0; m)= 0. The real part of
am (z; m) will be discontinuous (by 27r) across each of the branchlines. In nearly all
respects, as the form of (2.9) intimates, the Jacobian amplitude function am (z; m)
may be effectively considered as a doubly pseudoperiodic generalization of the singly
periodic Gudermannian function gd (z), noting in particular the degeneracy am (z;
m- 1)=gd (z).

3. The leriodicity lrolerties of am (z; m) for real m. Exactly as with the JEF, the
behavior of the function am (z; m) is characteristically different in the three distinct
regions: -o< m < 0, 0 m 1, and 1 m o. From (2.9), which is valid for all
parameter values, it follows that the amplitude function is always at least singly periodic
when m 0, with a period of 4iK’(m). Exploiting the fact that the amplitude function
for real m, like the JEF, is strictly real whenever z is real, expressions for am are given
in the regions m < 0 and m > 1 that reflect this characteristic. Unless specifically noted,
the degenerate cases of am (z; m 0) z and am (z; m 1) gd (z) are generally
excluded from the relations below. Finally, it should be noted that, in all of the work
to follow, the numerical value of the parameter m will generally be restricted to
0 m 1 and parameters that are less than zero or greater than 1 will then be expressed
explicitly in terms of m, e.g., a parameter greater than 1 will be represented by 1/m
where 0 m < 1.

3.1. am (z; m) for 0< m < 1. An arbitrary point in the complex plane may be
represented as

(3.1) z+2sK+2itK’=x+iy/2sK/2itK’, Ix/2Kll and

where s and are integers and where, for 0 m 1, both K and K’ are real. Only the
lines y=(2t/ 1)K’, which include the logarithmic branchpoints of am (z; m), are
excluded from the representation (3.1). When we use (2.12) and the expression for
am (z; m) given by (2.10), it is a straightforward task to derive the result:

1 -(-1)
(3.2) am(z/2sK/2itK’;m)=sTr/sgn(x)Tr/(-1)t am(z;m).

2

Thus we have am (z+2sK+2itK’; m)=am (z; m) if and only if s=0 and is even
and so, for 0 m_-< 1, the function am (z; m) is a singly periodic function with the
strictly imaginary period 4iK’. Equation (3.2) corresponds exactly with the relief figures
for am (z; m) given by Jahnke and Emde [13]. Note that the branchlines so clearly
illustrated in those figures are also explicitly accounted for by (3.2). For example,
taking s 2, 1, and z x > 0, we have am (4K + 2iK’ + x; m) 3’-am (x; m),
whereas am (4K +2iK’-x; m)= 7r+am (x; m).

3.2. am (z; m) for m < 0. Denoting a negative parameter (imaginary modulus) by
the expression -m/m’ where m’= 1 m and 0 < m < 1, we have the identities [5], 10],
[15], [23]

(3.3) K(-m/m’) k’K(m), K’(-m/m’) k’K’(m)+ ik’K(m).

Note that the sign used in this identity for K’(-m/m’) is ambiguous for real m; either
a + or may be used (consistently) without affecting the validity of the final results
[19, pp. 103-107]. The expression (2.9) for the amplitude function with negative para-
meter then takes the following form:

(3.4) am z;- 2 gd
K’+ig n+2k,
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This expression is cumbersome in that the individual terms in the summation are
complex when z is strictly real even though the function am (z;-m/m’) itself is real
in such a case. To overcome this shortcoming, consider the expression

G()= (l+ia) sech ar z+n+ -sech ;+ia(+n)
where a K/K’. This function G(z) is a doubly periodic function since G( + 1)=
G(+ 2i/a) G(z) with possible poles at the isolated points (s +1/2) + (2t + 1)i/2a,
i.e., G() is an elliptic function. It is, however, straightforward to prove that the limit
(-,). G()=0 as so that the function G(z) is indeed without poles. As a
consequence of Liouville’s theorem, an elliptic function without poles must be a
constant and, in fact, we have that G(z) 0. By integration we arrive at the desired result

(3.5) am z’- gd n+2+.=_ kr 2

for which the only complex dependence is implicitly through z. Representing an
arbitrary point in the complex plane as above with [x/2k’K and ly/k’K’l<l and
using the representation (2.12) in (3.5) leads to the result

am[zk’K+2sK( +2itK’

1-(-1)’
(3.6) (s- t)+ (1 sgn (x))

2

am

The left-hand side of (3.6) will equal am (z k’K;-m/m’) if and only if s 2L
so that am(;-m/m’) is singly periodic with the strictly imaginary period
4K(-m/ m’) + 4iK’(-m/ m’) 4ik’K’.

3.3. (z; m) fr m > 1. Denoting a parameter greater than 1 by 1/m where
0< m < 1, we have [5], [10], [15], [23]

(3.7) K(1/m) kK(m)+ ikK’(m), K’(1/m)= kK’(m)

noting that, exactly as for (3.3), the sign on the right-hand side of this equation is
arbitrary (Neville [19, pp. 103-107]). The expression for am(z; 1/m) from (2.9)
becomes

]am z; gd n+2kK +in

(3.8)
(-1)gd n+

Then, with Ix/2kgl and ly/kg’l< 1, we nnd, using (2.13),

am(z+2sK()+2itK’();)
(3.9)

=(-1)’sgn(/)l-(-1)+’ ()2
+(-1)am z;
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Thus we find that am (z; 1/m) is a doubly periodic function, i.e., am (z+2sK(1/m)+
2itK’(1/m); 1/m)= am (z; 1/m) if both s and are, independently, even integers. One
of the periods, 4ikK’, is strictly imaginary, while the other, 4kK, is strictly real.

4. Linear and quadratic transformations of the amplitude function. This section
will present the (linear) negative parameter, reciprocal parameter, and complementary
parameter transformations as well as the (quadratic) Landen and Gauss transformations
of the Jacobian amplitude function. Although only two linear transformations plus
the Landen transformation are strictly necessary since the remaining linear and quad-
ratic transformations can then be derived from these [8], [10], [20], all of the above-
mentioned transformations are included here since they are the most familiar and
widely used of the JEF transformations. The convention followed here for the nomen-
clature of the quadratic transformations is that defined by Carlson [6] for which the
variable changes in the same/opposite manner as the parameter for the Gauss/Landen
transformations. Concise yet general discussions ofthe transformation theory of elliptic
functions may be found in the texts by Erd61yi et al. [10], Chandrasekharan [8], and
Rauch and Lebowitz [20].

4.1. The negative parameter (imaginary modulus) transformation. The relationship
between am (z; m) and am (z;-m/m’) follows immediately from the identity given
in (3.5), i.e.,

(4.1) am(k’z; ,) 7r=-- am (K z; m), -oo< m < 1

from which follow directly the JEF transformations dn(k’z;-m/m’) nd(z; m), and
so on. This transformation was first given by Jacobi in Fundamenta Nova [12, p. 90]
and, apparently, subsequently forgotten. The amplitude function in the region m < 0
is characteristically very similar to am (z; m) with 0 < m < 1. In each case, the function
is singly periodic with an imaginary period =4i. Re [K’(m)] while, for z strictly real,
both am (x; m) and am (x;-m/m’) are unbounded, monotonically increasing func-
tions and so are invertible over the entire real axis. Finally, we note that limit
am (z; m)=0 as m--o.

4.2. The complementary parameter (imaginary argument) transformation. Re-
placing m with m’ in (2.9) gives immediately

(4.2) am(z;m’)= 2 gd n+

However, to relate am (z; m) directly to am (z; m’), the familiar transformation for
dn(z; m’) is rewritten as [5], [10], [23]

d dn(iz; m) -i d@ d
(4.3) an(z; m’)= ’)zam (z; rn

cn(iz; m) cosh (i) dz dzgd (-i)

where b am (iz; rn). Integrating from zero to z yields the result

(4.4) am (z; m’) gd [-i. am (iz; m)], 0 -< rn =< 1

where IRe(z)l<K’(m) and IIm(z)l<K(m). Equations (3.1) and (3.2) may be used
to extend the applicability of this result for arbitrary values of z. In certain respects,
this transformation could be aptly subtitled the "circular-hyperbolic transformation"
since it relates the "nearly circular" JEF to their "nearly hyperbolic" counterparts,
i.e., the amplitude and elliptic functions with rn 0 to those with rn 1. In the extreme
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limit of rn =0, (4.4) gives am (z; 1)=gd (z). Finally, note that the parameters rn and
m’ are interchangeable in (4.4) so that am (z; m) gd [-i. am (iz; m’)].

4.3. The descending Landen transformation. Dealing for the moment with general,
iterative subscripts, we define, for 0-< mi <= 1, the transformations mi+l m as

(4.5) mi+l f-(mi) [ll k: mi f+(mi+l)
(1 +4ki+lki+a)

such that 0 _-< m+ -< rn _-< 1 and f_[f+(m) f+[f_(m) m. The quarter periods for the
two parameters connected by f_ and f+ are related as

(4.6) Ki+l
1 + kl K, and K’i+=(l+k)Ki
2

so that

(4.7) K+l-2 K
Ki+l

and qi+l q2i

Setting 0 and using the notation mo m, we can write the identities

(4.8) am (z; m)= ,=_ooE gdL K 2n+(l+k’)
z

and

(4.9) am (K z; m)
,=_oo gd[. K 2n+l-(l+k’)

z

Combining these equations gives the descending Landen transformation for the ampli-
tude function

(4.10) am[(l+k’)z;m]=am(z;m)-am(K-z;m)+-, 0-<m<l.

4.4. The reciprocal parameter transformation. Using the relations for the quarter
periods, (3.7), along with (4.8) and (4.9) above, we have directly

(4.11) am[(1 k’)z’-ll] 2r=am(z;m)+am(K-z;m)--, 0<m<l.

Up to this point, all of the transformations given for am (z; m) involve precisely those
parameters that characterize the analogous JEF transformations. Although (4.11) is
the correct, general form of the transformation relating the amplitude functions in the
regions 0 < m < 1 and m > 1, it does not directly relate rn to 1/m as its name suggests.
To resolve this point, reference is made to (3.9) and the fact that, when and only when
m > 1, is am (z; m) a strictly oscillatory function with respect to both K and K’. Hence,
except at its branchpoints, the function am (z; m > 1) is bounded throughout the entire
complex plane, and we may properly represent it as an inverse of some combination
of JEF. From the familiar identity for dn(u+v; m) it follows that, for IRe (u)/KI,
IRe(v)/gl<l and IIm (u)/K’l, IIm (v)/g’l<l,
(4.12) am (u + v; m) tan-l[sc(u;m) dn(v; m)] +tan-l[dn(u;m)sc(v;m)].
In particular, setting u kx and v iky leads to

am (kx+ iky; m) =tan -1 [sc(kx; m)dc(ky; m’)]
(4.13)

+ i. tanh- [dn(kx; m)sn(ky; m’)].
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Transforming m 1/m and rearranging terms within the brackets results in

(4.14)
am (kx+ iky;-) =sin- [ k. sn(x; m) ][1-dn2xi m)sn2(y; m’)] 1/2

+ i. tanh -1 [k. cn(x; m)sd(y; m’)].

In the strictest sense, relations such as these are incorrect whenever 1/m < 1 unless
the values of the real and imaginary parts of the variable z are specifically restricted
as stated above or as in (3.1) and (3.2). In contrast, however, the identity of (4.14) is
valid as written when 1/m > 1 for arbitrary z, the branchpoints excepted. Thus, the
reciprocal parameter transformation for the amplitude function, (4.14), can be rewritten
succinctly (although essentially symbolically when z is complex) in the form

(4.15) am (kz; 1/m)=sin-l[k sn(z; m)], 0<m<_-I

noting that limit am (z; m) 0 as m - c. In particular, note that, for z real (or y 4tK’),
the pragmatic identity am (kx; I/m)=sin- [k. sn(x; m)] gives the correct value of
the amplitude function for all values of x.

The similarity between the reciprocal parameter transformation in the form of
(4.11) and the descending Landen transformation, (4.10), is remarkable and is, in part,
related to the fact that f+(ml)=f+(1/m). By combining these two equations and
invoking the result in (4.1), it is possible to write a completely general identity that
relates the amplitude functions in the three regions of real m as follows"

(4.16) am (z; m)=am (k’z;-m/m’)+am ((1- k’)z; 1/ml)

with (-m/m’)<=O<=m<=l <=(1/ml).

4.5. The ascending Landen transformation. Adding (4.10) and (4.11) leads immedi-
ately to the ascending Landen transformation for the amplitude function as follows:

am (z; m) =1/2am [(1 + k’)z; m]+1/2am[(1-k’)z; 1/m]
(4.17)

=1/2 am [(1 + k’)z; m]+1/2 sin -1 [ksn[(1 + k’)z; m]].

Note that many texts refer simply to "the Landen transformation," invariably meaning
the descending Landen transformation corresponding to (4.10) above. The relationships
for the JEF corresponding to (4.10) are rational ones [5], [23], whereas those corre-
sponding to the ascending Landen transformation, (4.17), are algebraic relations. This
is one instance in which, apart from its conciseness, the form of the amplitude function
transformation is simple and straightforward in comparison to its JEF counterpart.

4.6. The ascending/descending Gauss transformations. The ascending/descending
Gauss transformations are derived by combining the complementary parameter trans-
formation with the descending/ascending Landen transformations [8], 10], [20]. From
(4.4) and (4.10), for 0< m < 1, follows the ascending Gauss transformation in the form

(4.18) gd[i.am[(l+k)z;m]]=gd[i.am(z;ml)]+gd[i.am(z+iK;m)]+-
while, from (4.4) and (4.17), the descending Gauss transformation is found to be

1
gd [i. am (z; m)]=gd [i. am (l+k)z; m]

(4.19)

lgd[i-i.am[K-(l+kl)Z" m]].+2
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As with the Landen transformations, many texts that refer simply to "the Gauss
transformation" invariably mean the ascending Gauss transformation for which the
transformation formulae for the JEF are rational expressions [5], [23], unlike those
corresponding to the descending Gauss transformation for which the JEF identities
are algebraic.

5. The method of the arithmetic-geometric mean and am (x; m). Although, in prin-
ciple, the method of the arithmetic-geometric mean (AGM) (or the theta functions)
could be employed for a complex variable (and, conceivably, for complex m [9]), it
is considerably more practical to calculate the real and imaginary parts of am (z; m)
and the JEF separately using identities such as (4.13). Thus, only strictly real variables
x will hereinafter be considered. In addition, this section will deal with the "classical"
method of the AGM (e.g., King [14]) utilizing various trigonometric or hyperbolic
recursion identities as opposed to purely algebraic versions [6], [21]. The former, while
nominally less efficient computationally, offer the advantage of calculating the true
value of am (x; m) for arbitrarily large Ixl, i.e., including the contribution sr given in
(3.2). Moreover, while the relations between the method of the AGM and the transfor-
mations presented here hold true whichever version is adopted, these relations are
more explicit and thus more readily recognized in the "classical" case.

The method of the AGM begins by iteratively calculating, with 0 < rn < 1, the trio
of numbers

(5.1) a,+l 1/2(an+bn), bn+ (anbn) 1/2

with starting values of ao 1, bo k’, and Co k. The numbers an and bn converge
rapidly to a common limit (=Tr/2K) while cn, as a measure of the "error" with
2 2 2 c2,/4an+ The calculation is stoppedcn an-bn, vanishes quadratically, i.e., cn/ 1.

at the Nth step where, to some prescribed degree of accuracy, cv is negligible. For
the descending Landen version of the AGM, a sequence of angles _, -2, ", o
is then calculated sequentially using the recurrence relation

(5.2) sin (2:I)n_ --Cirri) c--’gn sin (n) withN 2NaNxan

to which the amplitude function and the JEF are related as

am (x; rn) 0, am (K-x" m)=o-+--
2’

(5.3) sn(x; m) sin (o), cn(x; m) cos (o),

dn(x; m)=
cn(x; m) cos (o)

sn(K-x; m) COS

Attention is drawn to the first two identities of (5.3) that, to the best of the author’s
knowledge, have not heretofore been given in any of the papers dealing with the AGM
as a method of evaluating the JEF. Yet, given these two results, it follows that .the
evaluation of the JEF is, in fact, entirely incidental to this method, i.e., it is am (x; m)
and am (K- x; m), which are the primary quantities found via the AGM from which
the JEF are then calculated from simple trigonometric expressions.

To indeed establish the validity of the identities listed in (5.3), it is first noted that
the (an, bn, cn) scale described by (5.1) is exactly equivalent to sequential applications
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of the descending operator f_(mi) of (4.5), i.e.,

ko k

kl- (1 k)/(1 / k)=f_(m)= cl/a

(5.4) kE=(1-k)/(l/k)=fE(m)=cE/a2

kn/l (1- k’)/(1 / k’)=f_/l(m)- Cn/l/an/

and where K(m)= (r/2)(1 / kl)(1 / k2) (r/2aN). With the identification of kn
c,,/an, the recurrence relation (5.2) is immediately recognized as the ascending Landen
transformation for the amplitude function, (4.17), so that the bn sequence is equivalent
to

(5.5)

o am (x; m)

=am
(l+kl)’ ml

2 am
(1 + k,)(1 + k2)’ mE

=am (l+k)(l+k)...(l+k),m
Note that, even though it is the descending Landen transformation that is the basis of
this particular version of the AGM and transforms the variable bo- bN as immediately
above, it is the ascending Landen transformation for am (x; m) that is used in the
actual calculations to transform bn- bo. With the aid of (4.10), the sequence of
amplitude functions, (5.5), may be re-expressed as

n=am (x; m)+ (1-no)[--am (K-x; m)]
hz l

(5.6)
n--1 2

+(1--tn0)(1--tnl ’,
i=1 j=l

[am [2j 1
K+x; m]-am [2JilK-x; m]]

and

(5.7)
,,=-2"x+ sin

j=j(l+q2 /b)
r

2 "x + sech sin
2K j=lJ K

Equation (5.6), in particular, establishes the identities given in (5.3), while (5.7) offers
explicit testimony to the extraordinarily rapid convergence inherent to the AGM. This
latter equation states that, for the nth step, the first-order deviation of the variable b,
from linearity will go as q raised to the 2 power, i.e., given the relation of (4.7) for
the nome, the "error" is reduced quadratically on each iteration.
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The particular version of the AGM as just described with bo- k’ and the use of
the recurrence relation (5.2) is referred to as the descending Landen version of the
AGM. When we use bo k and (4.10) as the recurrence relation, the ascending Landen
version of the AGM sequentially raises the parameter to unity where bvgd.
Ascending and descending versions of the AGM based on Gauss transformations are
also possible (Carlson [6]). The use of an ascending and a descending transformation,
in particular, allows the numerical range of m to be restricted to 0 < m _-< 1/2. Whatever
the particular version adopted, however, the calculation of the JEF from the final
results, as for (5.3), proves to be incidental to the method in that the primary quantities
that are calculated via the bn are the amplitude function am (x; m) along with the
"coam" function am (K x; m).

Calculation of am (x; m) along with the JEF for parameter values outside the
range of 0 < m < 1 may be done as directly and efficiently as for the case of 0 < m < 1
through the use of the transformation formulae (4.1) and (4.11). To calculate the
amplitude function and the JEF for the case of a negative parameter -M where
0< M < o, the AGM is calculated as above with a parameter m M/(1 + M) and a
variable x k’ to give the results

am (x;-M) 1-o, am (K(-M)-x;-M) (r/2)- o,
(5.8) sn(x; -M) sin (1-o), cn(x; -M) cos (1-o),

dn(x; -M)= cos (1- o)/COS (o).
To calculate the elliptic functions for the case of a parameter M > 1, the AGM as
described above is calculated using a parameter rn =f/(ml), where ml I/M, and a
variable x/(1- k’) to give the results

am (x; M) 2o-1, am (x/kl; 1/M)
(5.9) sn(x; M) sin (2o-), cn(x; M) cos (2o- 1),

dn(x; M) cos (1).
Note that, in the case of M > 1, it is not the coam function that is calculated along
with am (x; M) but rather am (x/k 1/M), which yields the value of dn(x; M) directly.
The directness of these algorithms, i.e., the calculation of the actual values of the
amplitude function(s), may be contrasted with algorithms that calculate the JEF for
parameters less than zero or greater than 1 as either rational or algebraic expressions
involving values of JEF having 0< rn < 1 (e.g., [4]).

6. Concluding remarks. The results presented in this paper have shown that the
various linear and quadratic transformations of the JEF can be represented concisely
by the corresponding transformation of the Jacobian amplitude function am (z; m).
The nature of the amplitude function for arbitrary, real m has been shown to be
markedly different according to whether m < 1 or rn > 1, being a singly periodic function
with a strictly imaginary period when m < 1 and rn 0 while, for m > 1, am (z; m) is
a doubly periodic function with both a real and an imaginary period. Finally, the
method of the arithmetic-geometric mean has been shown to be principally a method
for the calculation of the functions am (x; m) and am (K- x; m) directly from which
then follow the values of the various JEF.
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